Receiver
In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves (electromagnetic waves of radio frequency) and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.
receiver
Radio receivers are essential components of all systems that use radio. The information produced by the receiver may be in the form of sound, video (television), or digital data.[1] A radio receiver may be a separate piece of electronic equipment, or an electronic circuit within another device. The most familiar type of radio receiver for most people is a broadcast radio receiver, which reproduces sound transmitted by radio broadcasting stations, historically the first mass-market radio application. A broadcast receiver is commonly called a "radio". However radio receivers are very widely used in other areas of modern technology, in televisions, cell phones, wireless modems, radio clocks and other components of communications, remote control, and wireless networking systems.
The most familiar form of radio receiver is a broadcast receiver, often just called a radio, which receives audio programs intended for public reception transmitted by local radio stations. The sound is reproduced either by a loudspeaker in the radio or an earphone which plugs into a jack on the radio. The radio requires electric power, provided either by batteries inside the radio or a power cord which plugs into an electric outlet. All radios have a volume control to adjust the loudness of the audio, and some type of "tuning" control to select the radio station to be received.
FM stereo radio stations broadcast in stereophonic sound (stereo), transmitting two sound channels representing left and right microphones. A stereo receiver contains the additional circuits and parallel signal paths to reproduce the two separate channels. A monaural receiver, in contrast, only receives a single audio channel that is a combination (sum) of the left and right channels.[2][3][4] While AM stereo transmitters and receivers exist, they have not achieved the popularity of FM stereo.
Digital audio broadcasting (DAB) is an advanced radio technology which debuted in some countries in 1998 that transmits audio from terrestrial radio stations as a digital signal rather than an analog signal as AM and FM do. Its advantages are that DAB has the potential to provide higher quality sound than FM (although many stations do not choose to transmit at such high quality), has greater immunity to radio noise and interference, makes better use of scarce radio spectrum bandwidth, and provides advanced user features such as electronic program guide, sports commentaries, and image slideshows. Its disadvantage is that it is incompatible with previous radios so that a new DAB receiver must be purchased. As of 2017, 38 countries offer DAB, with 2,100 stations serving listening areas containing 420 million people. The United States and Canada have chosen not to implement DAB.
Radio receivers are essential components of all systems that use radio. Besides the broadcast receivers described above, radio receivers are used in a huge variety of electronic systems in modern technology. They can be a separate piece of equipment (a radio), or a subsystem incorporated into other electronic devices. A transceiver is a transmitter and receiver combined in one unit. Below is a list of a few of the most common types, organized by function.
A radio receiver is connected to an antenna which converts some of the energy from the incoming radio wave into a tiny radio frequency AC voltage which is applied to the receiver's input. An antenna typically consists of an arrangement of metal conductors. The oscillating electric and magnetic fields of the radio wave push the electrons in the antenna back and forth, creating an oscillating voltage.
The antenna may be enclosed inside the receiver's case, as with the ferrite loop antennas of AM radios and the flat inverted F antenna of cell phones; attached to the outside of the receiver, as with whip antennas used on FM radios, or mounted separately and connected to the receiver by a cable, as with rooftop television antennas and satellite dishes.
Radio waves from many transmitters pass through the air simultaneously without interfering with each other and are received by the antenna. These can be separated in the receiver because they have different frequencies; that is, the radio wave from each transmitter oscillates at a different rate. To separate out the desired radio signal, the bandpass filter allows the frequency of the desired radio transmission to pass through, and blocks signals at all other frequencies.
The bandpass filter consists of one or more resonant circuits (tuned circuits). The resonant circuit is connected between the antenna input and ground. When the incoming radio signal is at the resonant frequency, the resonant circuit has high impedance and the radio signal from the desired station is passed on to the following stages of the receiver. At all other frequencies the resonant circuit has low impedance, so signals at these frequencies are conducted to ground.
The power of the radio waves picked up by a receiving antenna decreases with the square of its distance from the transmitting antenna. Even with the powerful transmitters used in radio broadcasting stations, if the receiver is more than a few miles from the transmitter the power intercepted by the receiver's antenna is very small, perhaps as low as picowatts or femtowatts. To increase the power of the recovered signal, an amplifier circuit uses electric power from batteries or the wall plug to increase the amplitude (voltage or current) of the signal. In most modern receivers, the electronic components which do the actual amplifying are transistors.
Receivers usually have several stages of amplification: the radio signal from the bandpass filter is amplified to make it powerful enough to drive the demodulator, then the audio signal from the demodulator is amplified to make it powerful enough to operate the speaker. The degree of amplification of a radio receiver is measured by a parameter called its sensitivity, which is the minimum signal strength of a station at the antenna, measured in microvolts, necessary to receive the signal clearly, with a certain signal-to-noise ratio. Since it is easy to amplify a signal to any desired degree, the limit to the sensitivity of many modern receivers is not the degree of amplification but random electronic noise present in the circuit, which can drown out a weak radio signal.
After the radio signal is filtered and amplified, the receiver must extract the information-bearing modulation signal from the modulated radio frequency carrier wave. This is done by a circuit called a demodulator (detector). Each type of modulation requires a different type of demodulator
The modulation signal output by the demodulator is usually amplified to increase its strength, then the information is converted back to a human-usable form by some type of transducer. An audio signal, representing sound, as in a broadcast radio, is converted to sound waves by an earphone or loudspeaker. A video signal, representing moving images, as in a television receiver, is converted to light by a display. Digital data, as in a wireless modem, is applied as input to a computer or microprocessor, which interacts with human users.
In the simplest type of radio receiver, called a tuned radio frequency (TRF) receiver, the three functions above are performed consecutively:[9] (1) the mix of radio signals from the antenna is filtered to extract the signal of the desired transmitter; (2) this oscillating voltage is sent through a radio frequency (RF) amplifier to increase its strength to a level sufficient to drive the demodulator; (3) the demodulator recovers the modulation signal (which in broadcast receivers is an audio signal, a voltage oscillating at an audio frequency rate representing the sound waves) from the modulated radio carrier wave; (4) the modulation signal is amplified further in an audio amplifier, then is applied to a loudspeaker or earphone to convert it to sound waves.
Although the TRF receiver is used in a few applications, it has practical disadvantages which make it inferior to the superheterodyne receiver below, which is used in most applications.[9] The drawbacks stem from the fact that in the TRF the filtering, amplification, and demodulation are done at the high frequency of the incoming radio signal. The bandwidth of a filter increases with its center frequency, so as the TRF receiver is tuned to different frequencies its bandwidth varies. Most important, the increasing congestion of the radio spectrum requires that radio channels be spaced very close together in frequency. It is extremely difficult to build filters operating at radio frequencies that have a narrow enough bandwidth to separate closely spaced radio stations. TRF receivers typically must have many cascaded tuning stages to achieve adequate selectivity. The Advantages section below describes how the superheterodyne receiver overcomes these problems.
In the superheterodyne, the radio frequency signal from the antenna is shifted down to a lower "intermediate frequency" (IF), before it is processed.[14][15][16][17] The incoming radio frequency signal from the antenna is mixed with an unmodulated signal generated by a local oscillator (LO) in the receiver. The mixing is done in a nonlinear circuit called the "mixer". The result at the output of the mixer is a heterodyne or beat frequency at the difference between these two frequencies. The process is similar to the way two musical notes at different frequencies played together produce a beat note. This lower frequency is called the intermediate frequency (IF). The IF signal also has the modulation sidebands that carry the information that was present in the original RF signal. The IF signal passes through filter and amplifier stages,[12] then is demodulated in a detector, recovering the original modulation. 041b061a72